1. Fuller R, Landrigan PJ, Balakrishnan K, et al. Pollution and health: a progress update. Lancet Planet Health. Jun 2022;6(6):e535-e547. doi:10.1016/S2542-5196(22)00090-0
2. Lenzen M, Malik A, Li M, et al. The environmental footprint of health care: a global assessment. Lancet Planet Health. Jul 2020;4(7):e271-e279. doi:10.1016/S2542-5196(20)30121-2
3. Pichler PP, Jaccard IS, Weisz U, Weisz H. International comparison of health care carbon footprints. Environ Res Lett. Jun 2019;14(6)doi:ARTN 06400410.1088/1748-9326/ab19e1
4. Romanello M, McGushin A, Di Napoli C, et al. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. The Lancet. 2021;398(10311):1619-1662.
5. Watts N, Amann M, Arnell N, et al. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. The Lancet. 2019;394(10211):1836-1878.
6. Watts N, Amann M, Arnell N, et al. The 2020 report of the Lancet Countdown on health and climate change: responding to converging crises. The Lancet. 2021;397(10269):129-170.
7. Sherman JD, MacNeill A, Biddinger PD, Ergun O, Salas RN, Eckelman MJS, J.D.; MacNeill, A.;. Sustainable and Resilient Health Care in the Face of a Changing Climate. Annual Review of Public Health. 2023;44doi:https://doi.org/10.1146/annurev-publhealth-071421-051937
8. MacNeill AJ, Lillywhite R, Brown CJ. The impact of surgery on global climate: a carbon footprinting study of operating theatres in three health systems. The Lancet Planetary Health. 2017;1(9):e381-e388.
9. McGain F, McAlister S, McGavin A, Story D. The financial and environmental costs of reusable and single-use plastic anaesthetic drug trays. Anaesthesia and Intensive Care. 2010;38(3):538-544.
10. McGain F, Muret J, Lawson C, Sherman JD. Environmental sustainability in anaesthesia and critical care. Br J Anaesth. Nov 2020;125(5):680-692. doi:10.1016/j.bja.2020.06.055
11. Ryan S, Sherman J. Sustainable anesthesia. Anesthesia & Analgesia. 2012;114(5):921-923.
12. White S, Shelton C, Gelb A, et al. Principles of environmentally‐sustainable anaesthesia: a global consensus statement from the World Federation of Societies of Anaesthesiologists. Anaesthesia. 2022;77(2):201-212.
13. Eckelman M, Mosher M, Gonzalez A, Sherman J. Comparative life cycle assessment of disposable and reusable laryngeal mask airways. Anesth Analg. May 2012;114(5):1067-72. doi:10.1213/ANE.0b013e31824f6959
14. Sherman JD, Thiel, C., MacNeill, A., et al.,. The Green Print: Advancement of Environmental Sustainability in Health Care. Resources, Conservation and Recycling. 2020;161(October):104882. doi:https://doi.org/10.1016/j.resconrec.2020.104882
15. Sherman JD, Raibley LA, Eckelman MJ. Life Cycle Assessment and Costing Methods for Device Procurement: Comparing Reusable and Single-Use Disposable Laryngoscopes. Anesth Analg. Jan 9 2018;doi:10.1213/ANE.0000000000002683
16. Eckelman MJ, Sherman JD. Environmental Impacts of the US Health Care System and Effects on Public Health. PloS ONE. 2016;11(6):e0157014.
17. McGain F, Story D, Lim T, McAlister S. Financial and environmental costs of reusable and single-use anaesthetic equipment. BJA: British Journal of Anaesthesia. 2017;
18. Thiel CL, Eckelman M, Guido R, et al. Environmental Impacts of Surgical Procedures: Life Cycle Assessment of Hysterectomy in the United States. Environmental Science & Technology. 2015/02/03 2014;49(3):1779-1786. doi:10.1021/es504719g
19. Morris DS, Wright T, Somner JEA, Connor A. The carbon footprint of cataract surgery. Eye. 2013;(27):495-501. doi:10.1038
20. Thiel CL, Schehlein E, Ravilla T, et al. Cataract surgery and environmental sustainability: Waste and lifecycle assessment of phacoemulsification at a private healthcare facility. J Cataract Refract Surg. Nov 2017;43(11):1391-1398. doi:10.1016/j.jcrs.2017.08.017
21. Venkatesh R, van Landingham SW, Khodifad AM, et al. Carbon footprint and cost–effectiveness of cataract surgery. Current Opinion in Ophthalmology. 2016;27(1):82-88.
22. Leapman MS, Thiel CL, Gordon IO, et al. Environmental Impact of Prostate Magnetic Resonance Imaging and Transrectal Ultrasound Guided Prostate Biopsy. Eur Urol. May 2023;83(5):463-471. doi:10.1016/j.eururo.2022.12.008
23. Thiel CL, Fiorin Carvalho R, Hess L, et al. Minimal Custom Pack Design and Wide-Awake Hand Surgery: Reducing Waste and Spending in the Orthopedic Operating Room. Hand (N Y). Mar 2019;14(2):271-276. doi:10.1177/1558944717743595
24. Gatenby PA. Modelling the carbon footprint of reflux control. Int J Surg. 2011;9(1):72-4. doi:10.1016/j.ijsu.2010.09.008
25. Chen M, Zhou R, Du C, et al. The carbon footprints of home and in-center peritoneal dialysis in China. journal article. International Urology and Nephrology. 2016:1-7. doi:10.1007/s11255-016-1418-5
26. Dunbar-Reid K, Buikstra E. The environmental impact of healthcare and haemodialysis: The Jekyll and Hyde dilemma. Renal Society of Australasia Journal. 2017;13(2):38.
27. Lim AEK, Perkins A, Agar JWM. The carbon footprint of an Australian satellite haemodialysis unit. Australian Health Review. 2013;37(3):369-374. doi:http://dx.doi.org/10.1071/AH13022
28. Esmaeili A, McGuire C, Overcash M, Ali K, Soltani S, Twomey J. Environmental impact reduction as a new dimension for quality measurement of healthcare services: The case of magnetic resonance imaging. International Journal of Health Care Quality Assurance. 2018;31(8):910-922. doi:10.1108/Ijhcqa-10-2016-0153
29. Esmaeili A, Twomey JM, Overcash MR, Soltani SA, McGuire C, Ali K. Scope for energy improvement for hospital imaging services in the USA. Journal of health services research & policy. Apr 2015;20(2):67-73. doi:10.1177/1355819614554845
30. Esmaeili MA, Jahromi A, Twomey J, et al. Energy consumption of VA hospital CT scans. 2011:
31. Spoyalo K, Lalande A, Rizan C, et al. Patient, hospital and environmental costs of unnecessary bloodwork: capturing the triple bottom line of inappropriate care in general surgery patients. BMJ Open Qual. Jul 2023;12(3)doi:10.1136/bmjoq-2023-002316
32. Sanchez SAE, M.; Sherman, J.D. Environmental and economic comparison of reusable and disposable blood pressure cuffs in multiple clinical settings. Resour Conserv Recy. 2020;155(2020):104643.
33. McAlister S, Ou Y, Neff E, et al. The Environmental footprint of morphine: a life cycle assessment from opium poppy farming to the packaged drug. BMJ Open. October 1, 2016 2016;6(10)doi:10.1136/bmjopen-2016-013302
34. Parvatker AG, Tunceroglu H, Sherman JD, et al. Cradle-to-Gate Greenhouse Gas Emissions for Twenty Anesthetic Active Pharmaceutical Ingredients Based on Process Scale-Up and Process Design Calculations. Acs Sustain Chem Eng. Apr 1 2019;7(7):6580-6591. doi:10.1021/acssuschemeng.8b05473
35. Sherman JL, C.; Lamers, V.; Eckelman, M. Life Cycle Greenhouse Gas Emissions of Anesthetic Drugs. Anesthesia & Analgesia May. 2012;114(5):1086-1090.
36. Chung JW, Meltzer DO. Estimate of the carbon footprint of the US health care sector. JAMA. Nov 11 2009;302(18):1970-2. doi:10.1001/jama.2009.1610
37. Eckelman MJ, Huang K, Lagasse R, Senay E, Dubrow R, Sherman JD. Health Care Pollution And Public Health Damage In The United States: An Update. Health Aff (Millwood). Dec 2020;39(12):2071-2079.
38. Eckelman MJ, Sherman JD, MacNeill AJ. Life cycle environmental emissions and health damages from the Canadian healthcare system: An economic-environmental-epidemiological analysis. PLoS Med. Jul 2018;15(7):e1002623. doi:10.1371/journal.pmed.1002623
39. Malik A, Lenzen M, McAlister S, McGain F. The carbon footprint of Australian health care. The Lancet Planetary Health. 2018/01/01/ 2018;2(1):e27-e35. doi:https://doi.org/10.1016/S2542-5196(17)30180-8
40. Nansai K, Fry J, Malik A, Takayanagi W, Kondo N. Carbon footprint of Japanese health care services from 2011 to 2015. Resour Conserv Recy. Jan 2020;152doi:UNSP 104525 10.1016/j.resconrec.2019.104525
41. Tennison I, Roschnik S, Ashby B, et al. Health care's response to climate change: a carbon footprint assessment of the NHS in England. The Lancet Planetary Health. 2021;5(2):e84-e92.
42. Weisz U, Pichler P-P, Jaccard IS, et al. Carbon emission trends and sustainability options in Austrian health care. Resources, Conservation and Recycling. 2020;160:104862.
43. Wu R. The carbon footprint of the Chinese health-care system: an environmentally extended input-output and structural path analysis study. Lancet Planet Health. Oct 2019;3(10):e413-e419. doi:10.1016/S2542-5196(19)30192-5
44. World Economic Forum. The New Plastics Economy: Rethinking the future of plastics. 2016. https://www.weforum.org/press/2016/01/more-plastic-than-fish-in-the-ocean-by-2050-report-offers-blueprint-for-change/
45. Lui K. Plastic Fibers Are Found in 83% of the World’s Tap Water, a New Study Reveals. Time Magazine2017.
46. Lee H, Kunz A, Shim WJ, Walther BA. Microplastic contamination of table salts from Taiwan, including a global review. Sci Rep. Jul 12 2019;9(1):10145. doi:10.1038/s41598-019-46417-z
47. Braun T, Ehrlich L, Henrich W, et al. Detection of Microplastic in Human Placenta and Meconium in a Clinical Setting. Pharmaceutics. Jun 22 2021;13(7)doi:10.3390/pharmaceutics13070921
48. Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. Discovery and quantification of plastic particle pollution in human blood. Environ Int. May 2022;163:107199. doi:10.1016/j.envint.2022.107199
49. Perez-Venegas DJ, Toro-Valdivieso C, Ayala F, et al. Monitoring the occurrence of microplastic ingestion in Otariids along the Peruvian and Chilean coasts. Mar Pollut Bull. Apr 2020;153:110966. doi:10.1016/j.marpolbul.2020.110966
50. Genuis SJ, Beesoon S, Lobo RA, Birkholz D. Human elimination of phthalate compounds: blood, urine, and sweat (BUS) study. ScientificWorldJournal. 2012;2012:615068. doi:10.1100/2012/615068
51. Landrigan PJ, Raps H, Cropper M, et al. The Minderoo-Monaco Commission on Plastics and Human Health. Annals of Global Health. 2023;89(1)
52. CDP. Carbon Disclosure Project. Accessed June 17, 2022. https://www.cdp.net/en
53. Greener NHS Programme. Net zero supplier roadmap. NHS England. Accessed June 17, 2022. https://www.england.nhs.uk/greenernhs/get-involved/suppliers/
54. MacNeill AJ, Hopf H, Khanuja A, et al. Transforming the medical device industry: Road map to a circular economy. Health Affairs. 2020;39(12):2088-2097.
55. Unger SR, Landis AE. Comparative life cycle assessment of reused versus disposable dental burs. The International Journal of Life Cycle Assessment. 2014;19(9):1623-1631.
56. McGain FM, S.; McGavin, A.; Story, S. A Life Cycle Assessment of Reusable and Single-Use Central Venous Catheter Insertion Kits. Anesthesia & Analgesia May. 2012;114(5):1073-1080.
57. Hennein R, Goddard E, Sherman JD. Stakeholder perspectives on scaling up medical device reprocessing: A qualitative study. PLoS One. 2022;17(12):e0279808. doi:10.1371/journal.pone.0279808
58. United States Government Accountability Office. Reprocessed Single-Use Medical Devices: FDA Oversight Has Increased, and Available Information Does Not Indicate That Use Presents an Elevated Health Risk (GAO-08-147). 2008. https://www.gao.gov/new.items/d08147.pdf
59. Assocation of Medical Device Reprocessors. Reprocessing by the numbers: 2010 annual AMDR member survey results. May 31, 2022. Accessed May 31, 2022. http://amdr.org/reprocessing-by-the-numbers/
60. Kwakye G, Pronovost PJ, Makary MA. Commentary: a call to go green in health care by reprocessing medical equipment. Acad Med. Mar 2010;85(3):398-400. doi:10.1097/ACM.0b013e3181cd5a71
61. Myrna F, Oliveira DC, Vinhas G, Silva I, Teixeira M, Galembeck A. Reprocessing of Catheters Used for Coronary Angiography and Changes in the Polymeric Structures. Cardiol Res. Oct 2018;9(5):300-306. doi:10.14740/cr775w
62. Macneill AJ, Rizan C, Sherman JD. Environmental Impact of perioperative care. UpToDate. Topic 139385. Wolters Kluwer; 2023. December 7, 2022. Accessed February 5, 2023.
63. United States Environmental Protection Agency. National emission standards for hazardous air pollutants (NESHAP). Accessed June 19, 2022. https://www.epa.gov/stationary-sources-air-pollution/halogenated-solvent-cleaning-national-emission-standards-0
64. Sulbaek Andersen MP, Nielsen OJ, Karpichev B, Wallington TJ, Sander SP. Atmospheric chemistry of isoflurane, desflurane, and sevoflurane: kinetics and mechanisms of reactions with chlorine atoms and OH radicals and global warming potentials. J Phys Chem A. Jun 21 2012;116(24):5806-20. doi:10.1021/jp2077598
65. Ravishankara AR, Daniel JS, Portmann RW. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science. Oct 2 2009;326(5949):123-5. doi:10.1126/science.1176985
66. Devlin-Hegedus JH, R.D.; McGain, F.; Sherman, J.D. Action guidance for addressing inhaled anaesthetic polluion. Anaesthesia. 2022;in production
67. Sherman JD, Chesebro BB. Inhaled anaesthesia and analgesia contribute to climate change. BMJ. Jun 8 2022;377:o1301. doi:10.1136/bmj.o1301
68. Sherman JD, Sulbaek Andersen MP, Renwick J, McGain F. Environmental sustainability in anaesthesia and critical care. Response to Br J Anaesth 2021; 126: e195-e197. Br J Anaesth. Jun 2021;126(6):e193-e195. doi:10.1016/j.bja.2020.12.025
69. Sustainable Development Unit. Carbon Footprint from Anaesthetic gas use.2012. https://www.sduhealth.org.uk/areas-of-focus/carbon-hotspots/anaesthetic-gases.aspx
70. Vollmer MK, Rhee TS, Rigby M, et al. Modern inhalation anesthetics: Potent greenhouse gases in the global atmosphere. Geophys Res Lett. Mar 16 2015;42(5):1606-1611.
71. Sulbaek Andersen MP, Nielsen OJ, Sherman JD. Assessing the potential climate impact of anaesthetic gases. Lancet Planetary Health. 2023;
72. Ryan SM, Nielsen CJ. Global warming potential of inhaled anesthetics: application to clinical use. Anesth Analg. Jul 2010;111(1):92-8. doi:10.1213/ANE.0b013e3181e058d7
73. Alexander R, Poznikoff A, Malherbe S. Greenhouse gases: the choice of volatile anesthetic does matter. Can J Anaesth. Feb 2018;65(2):221-222. doi:10.1007/s12630-017-1006-x
74. McGain F, Sheridan N, Wickramarachchi K, Yates S, Chan B, McAlister S. Carbon Footprint of General, Regional, and Combined Anesthesia for Total Knee Replacements. Anesthesiology. Dec 1 2021;135(6):976-991. doi:10.1097/ALN.0000000000003967
75. Sherman J, Le C, Lamers V, Eckelman M. Life cycle greenhouse gas emissions of anesthetic drugs. Anesth Analg. May 2012;114(5):1086-90. doi:10.1213/ANE.0b013e31824f6940
76. Feldman JM. Managing fresh gas flow to reduce environmental contamination. Anesth Analg. May 2012;114(5):1093-101. doi:10.1213/ANE.0b013e31824eee0d
77. Kennedy RR, Hendrickx JF, Feldman JM. There are no dragons: Low-flow anaesthesia with sevoflurane is safe. Anaesth Intensive Care. May 2019;47(3):223-225. doi:10.1177/0310057X19843304
78. Sondekoppam RV, Narsingani KH, Schimmel TA, McConnell BM, Buro K, Özelsel TJ-P. The impact of sevoflurane anesthesia on postoperative renal function: a systematic review and meta-analysis of randomized-controlled trials. Canadian Journal of Anesthesia/Journal canadien d'anesthésie. 2020;67(11):1595-1623.
79. Gandhi S, Feldman JM, Berkow L, Sherman JD. Low-Flow Sevoflurane is Safe, Economical, and Better for the Environment. ASA Monitor. 2023;87(May):34-35.
80. Barrick BP, Snow EA. WAG treatment and CO2 absorbers: new technologies for pollution and waste prevention. ASA Monitor. 2018;82(4):12-14.
81. Ek MT, K. Destruction of Medical N2O in Sweden, Greenhouse Gases - Capturing, Utilization and Reduction. IntechOpen; 2012.
82. Rauchenwald V, Rollins MD, Ryan SM, et al. New Method of Destroying Waste Anesthetic Gases Using Gas-Phase Photochemistry. Anesth Analg. Jul 2020;131(1):288-297. doi:10.1213/ANE.0000000000004119
83. Hinterberg J, Beffart T, Gabriel A, et al. Efficiency of inhaled anaesthetic recapture in clinical practice. Br J Anaesth. May 17 2022;doi:10.1016/j.bja.2022.04.009
84. Chakera A. Evidence-Based Policy Report: Reducing Environmental Emissions Attributed to Piped Nitrous Oxide Products within NHS Hospitals. OSF2021.
85. Seglenieks R, Wong A, Pearson F, McGain F. Discrepancy between procurement and clinical use of nitrous oxide: waste not, want not. Br J Anaesth. Jan 2022;128(1):e32-e34. doi:10.1016/j.bja.2021.10.021
86. Chakera A, Waite A, Marchant A, Baldie C. NHS Lothian nitrous oxide waste mitigation project: a lean systems approach. Anaesthesia. Sep 2021;76:20-20.
87. Chakera A, Pearson F. Nitrous oxide mitigation, look before you leap. Anaesthesia. Dec 2022;77(12):1454. doi:10.1111/anae.15862
88. Nitrous Oxide Project. Association of Anaestheticsts. Accessed February 5, 2023. https://anaesthetists.org/Home/Resources-publications/Environment/Nitrous-oxide-project
89. Feldman JM. A simple strategy for faster induction and more cost-effective use of anesthetic vapor. J Clin Monit Comput. Jan 1999;15(1):17-21. doi:10.1023/a:1009900605045
90. Glenski T, Narayanasamy S. Low Flow Anesthesia in Pediatric Patients. Soceity for Pediatric Anesthesia. Accessed Jul 2, 2023. https://pedsanesthesia.org/wp-content/uploads/2021/08/Low-Flow-Anesthesia-in-Pediatric-Patients.pdf
91. la Farre M, Perez S, Kantiani L, Barcelo D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trac-Trends in Analytical Chemistry. Dec 2008;27(11):991-1007. doi:10.1016/j.trac.2008.09.010
92. Sherman JDF, K.; Berry, J. Reducing Inhaled Anesthetic Waste and Pollution. Anesthesiology News: Anesthesiology News; 2017.
93. Feldman JM, Lo C, Hendrickx J. Estimating the Impact of Carbon Dioxide Absorbent Performance Differences on Absorbent Cost During Low-Flow Anesthesia. Anesth Analg. Feb 2020;130(2):374-381. doi:10.1213/ANE.0000000000004059
94. Jiang Y, Bashraheel MK, Liu H, et al. In vitro efficiency of 16 different Ca(OH)2 based CO2 absorbent brands. J Clin Monit Comput. Dec 2019;33(6):1081-1087. doi:10.1007/s10877-018-00248-x
95. Feldman JM, Hendrickx J, Kennedy RR. Carbon Dioxide Absorption During Inhalation Anesthesia: A Modern Practice. Anesth Analg. Apr 1 2021;132(4):993-1002. doi:10.1213/ANE.0000000000005137
96. United States Pharmacopœial Convention. The Pharmacopoeia of the United States of America. Rockville, MD; Boston: United States Pharmacopeial Convention, Charles Ewer. p. 21 volumes.
97. Daughton CG. Pharmaceuticals and the Environment (PiE): Evolution and impact of the published literature revealed by bibliometric analysis. Sci Total Environ. Aug 15 2016;562:391-426. doi:10.1016/j.scitotenv.2016.03.109
98. Atcheson CL, Spivack J, Williams R, Bryson EO. Preventable drug waste among anesthesia providers: opportunities for efficiency. J Clin Anesth. May 2016;30:24-32. doi:10.1016/j.jclinane.2015.12.005
99. Chaudhary K, Garg R, Bhalotra AR, Anand R, Girdhar K. Anesthetic drug wastage in the operation room: A cause for concern. J Anaesthesiol Clin Pharmacol. Jan 2012;28(1):56-61. doi:10.4103/0970-9185.92438
100. Mankes RF. Propofol wastage in anesthesia. Anesth Analg. May 2012;114(5):1091-2. doi:10.1213/ANE.0b013e31824ea491
101. Eichhorn J. APSF Hosts Medication Safety Conference: Concensus Group Defines Challenges and Opportunities for Improved Practice. Anesthesia Paitent Safety Foundation. Accessed February 5, 2023. http://www.apsf.org/newsletters/html/2010/spring/index.htm
102. Stockholm County Council. The Wise List. Janusinfo Region Stockholm. Updated 11-16-2018. Accessed June 21, 2022. https://klokalistan.se/
103. United States Environmental Protection Agency. Medical Waste. US EPA. Accessed July 6, 2022. https://www.epa.gov/rcra/medical-waste
104. World Health Organization. Health-care waste. Accessed July 6, 2022. https://www.who.int/news-room/fact-sheets/detail/health-care-waste
105. PQMD. Partnership for Quality Medical Donations. Accessed June 2021, 2022. https://www.PQMD.org
106. Sherman JD, Ryan S. Ecological responsibility in anesthesia practice. Int Anesthesiol Clin. Summer 2010;48(3):139-51. doi:10.1097/AIA.0b013e3181ea7587
107. McGain E, Hendel SA, Story DA. An audit of potentially recyclable waste from anaesthetic practice. Anaesth Intensive Care. Sep 2009;37(5):820-3. doi:10.1177/0310057X0903700521
108. United States Environmental Protection Agency. Resource Conservation and Recovery Act (RCRA) Laws and Regulations. Accessed June 19, 2022. https://www.epa.gov/rcra
109. Gordon DM, S.;. Disposal and Treatment of Controlled Substances from the O.R. ASA Monitor. 2018;82:18-21.
110. Beyond Plastics. New Report Reveals that U.S. Plastics Recycling Rate Has Fallen to 5%-6%. Accessed July 27, 2022.
111. Germain T. Yes, You Need to Recycle Your Old Batteries. Accessed June 19, 2022. https://www.consumerreports.org/recycling/yes-you-need-to-recycle-your-old-batteries-a5385943645/
112. World Health Organization. Guidelines for health care equipment donations. Accessed June 21, 2022. https://apps.who.int/iris/handle/10665/70806
113. Gatrad AR, Gatrad S, Gatrad A. Equipment donation to developing countries. Anaesthesia. Dec 2007;62 Suppl 1:90-5. doi:10.1111/j.1365-2044.2007.05309.x
114. REMEDY. Reclaimed Medical Devices for the Developing World. Accessed June 21, 2022. http://www.remedyinc.org/default.asp
115. USGBG. U.S. Green Building Council. Accessed June 21, 2022. https://www.usgbc.org/
116. GGHC. Green Guide for Health Care. Accessed June 21, 2022. https://www.gghc.org/
117. American Society of Heating Refrigeration and Air-Conditioning. ASHRAE 189.3-2017: Construction, and Operation of Sustainable High-Performance Health Care Facilities Accessed June 21, 2022. https://www.ashrae.org/technical-resources/standards-and-guidelines
118. Sheppy MP, S.; Kung, F. Healthcare Energy End-Use Monitoring Technical Report NREL/TP-5500-61064. 2014.
119. Chakera A. Driving down embedded emissions from medical nitrous oxide. British Medical Journal Publishing Group; 2021.
120. Roberts I, Godlee F. Reducing the carbon footprint of medical conferences. BMJ. Feb 17 2007;334(7589):324-5. doi:10.1136/bmj.39125.468171.80
121. Storz MA. Medical Conferences and Climate Change Mitigation: Challenges, Opportunities, and Omissions. J Occup Environ Med. Oct 2019;61(10):e434-e437. doi:10.1097/JOM.0000000000001681
122. Eskenazi B, Etzel RA, Sripada K, et al. The International Society for Children's Health and the Environment Commits to Reduce Its Carbon Footprint to Safeguard Children's Health. Environ Health Perspect. Jan 2020;128(1):14501. doi:10.1289/EHP6578
123. Milford K, Rickard M, Chua M, Tomczyk K, Gatley-Dewing A, Lorenzo AJ. Medical conferences in the era of environmental conscientiousness and a global health crisis: The carbon footprint of presenter flights to pre-COVID pediatric urology conferences and a consideration of future options. J Pediatr Surg. Aug 2021;56(8):1312-1316. doi:10.1016/j.jpedsurg.2020.07.013
124. Leddin D, Galts C, McRobert E, Igoe J, Singh H, Sinclair P. The Carbon Cost of Travel to a Medical Conference: Modelling the Annual Meeting of the Canadian Association of Gastroenterology. J Can Assoc Gastroenterol. Apr 2022;5(2):52-58. doi:10.1093/jcag/gwab021
125. Belzer A, Rosenbach M, Parker ER, Barbieri JS, Nelson CA. Reducing the carbon footprint of travel to an international dermatology conference: a case study of the Medical Dermatology Society's Carbon Footprint Program. Int J Dermatol. Jul 2023;62(7):e377-e379. doi:10.1111/ijd.16497
126. Bousema T, Selvaraj P, Djimde AA, et al. Reducing the Carbon Footprint of Academic Conferences: The Example of the American Society of Tropical Medicine and Hygiene. Am J Trop Med Hyg. Nov 2020;103(5):1758-1761. doi:10.4269/ajtmh.20-1013
127. Duane B, Lyne A, Faulkner T, et al. Webinars reduce the environmental footprint of pediatric cardiology conferences. Cardiol Young. Oct 2021;31(10):1625-1632. doi:10.1017/S1047951121000718
128. Lewy JR, Patnode CD, Landrigan PJ, Kolars JC, Williams BC. Quantifying the climate benefits of a virtual versus an in-person format for an international conference. Environ Health. Jul 19 2022;21(1):71. doi:10.1186/s12940-022-00883-7
129. Wortzel JR, Stashevsky A, Wortzel JD, Mark B, Lewis J, Haase E. Estimation of the Carbon Footprint Associated With Attendees of the American Psychiatric Association Annual Meeting. JAMA Netw Open. Jan 4 2021;4(1):e2035641. doi:10.1001/jamanetworkopen.2020.35641
130. Sherman J. COVID, Climate Change, and Carbon-Neutral Medical Coferences. ASA Monitor. 2021;85:22-23.
131. Sherman JD. COVID, Climate Change, and Carbon-Neutral Medical Conferences. ASA Monitor. 2021;85(January):22-23.
132. United States Environmental Protection Agency. Green Meetings. Accessed June 19, 2022. https://www.epa.gov/p2/green-meetings
133. Agriculture USDo. Food Waste and its Links to Greenhouse Gases and Climate Change. Accessed July 3, 2023. https://www.usda.gov/media/blog/2022/01/24/food-waste-and-its-links-greenhouse-gases-and-climate-change
134. United States Environmental Protection Agency. Reducing Wasted Food & Packaging: A Guide for Food Services and Restaurants. Accessed July 3, 2023. https://www.epa.gov/sites/default/files/2015-08/documents/reducing_wasted_food_pkg_tool.pdf
135. Ncube LK, Ude AU, Ogunmuyiwa EN, Zulkifli R, Beas IN. Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials (Basel). Nov 6 2020;13(21)doi:10.3390/ma13214994
136. Smith M, Singh H, Sherman JD. Infection Prevention, Planetary Health, and Single-Use Plastics. JAMA. 2023;330(20):1947–1948. doi:10.1001/jama.2023.20550.
137. American Society of Anesthesiologists. Statement on the Use of Low Gas Flows for Sevoflurane. https://www.asahq.org/standards-and-practice-parameters/statement-on-the-use-of-low-gas-flows-for-sevoflurane. October 18, 2023. Accessed January 21, 2024.
138. Olmos AV, Robinowitz D, Feiner JR, Chen CL, Gandhi S. Reducing Volatile Anesthetic Waste Using a Commercial Electronic Health Record Clinical Decision Support Tool to Lower Fresh Gas Flows. Anesth Analg. 2023 Feb 1;136(2):327-337. doi: 10.1213/ANE.0000000000006242. Epub 2022 Nov 4. PMID: 36638512; PMCID: PMC9846579.
Curated by: the ASA Committee on Environmental Health
Date of last update: January 29, 2024